Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.29.542720

ABSTRACT

Since its emergence in late 2019, infection by SARS-CoV-2 (COVID-19 disease) has quickly spread worldwide, leading to a pandemic that has caused millions of deaths and huge socio-economic losses. Although vaccination against COVID-19 has significantly reduced disease mortality, it has been shown that protection wanes over time, and that circulating SARS-CoV-2 variants may escape vaccine-derived immunity. Therefore, serological studies are still necessary to assess protection in the population and better guide vaccine booster programs. A common measure of protective immunity is the presence of neutralizing antibodies (nAbs). However, the gold standard method for measuring nAbs (plaque reduction neutralization test, or PRNT) is laborious and time-consuming, limiting its large-scale applicability. In this study, we developed a high-throughput fluorescence reduction neutralization assay (FRNA) to detect SARS-CoV-2 nAbs. Because the assay relies on immunostaining, we also developed and characterized in-house monoclonal antibodies (mAbs) to lower assay costs and reduce the vulnerability of the test to reagent shortages. Using samples collected before the pandemic and from individuals vaccinated against COVID-19, we showed that the results of the FRNA we developed using commercial and in-house mAbs strongly correlated with those of the standard PRNT method while providing results in 70% less time. In addition to providing a fast, reliable, and high-throughput alternative for measuring nAbs, the FRNA can be easily customized to assess other SARS-CoV-2 variants of concern (VOCs). We also demonstrated the applicability of the mAbs produced in immunohistochemistry assays.


Subject(s)
COVID-19 , Death
2.
Marta Giovanetti; Svetoslav Nanev Slavov; Vagner Fonseca; Eduan Wilkinson; Houriiyah Tegally; Jose Patane; Vincent Louis Viala; Emmanuel James San; Evandra Strazza Rodrigues; Elaine Vieira Santos; Flavia Aburjaile; Joilson Xavier; Hegger Fritsch; Talita Emile Ribeiro Adelino; Felicidade Pereira; Arabela Leal; Felipe Campos de Melo Iani; Glauco de Carvalho Pereira; Cynthia Vazquez; Gladys Mercedes Estigarribia Sanabria; Elaine Cristina de Oliveira; Luiz Demarchi; Julio Croda; Rafael Dos Santos Bezerra Sr.; Loyze Paola Oliveira de Lima; Antonio Jorge Martins; Claudia Renata dos Santos Barros; Elaine Cristina Marqueze; Jardelina de Souza Todao Bernardino; Debora Botequio Moretti; Ricardo Augusto Brassaloti; Raquel de Lello Rocha Campos Cassano; Pilar Drummond Sampaio Correa Mariani; Joao Paulo Kitajima; Bibiana Santos; Rodrigo Proto Siqueira; Vlademir Vicente Cantarelli; Stephane Tosta; Vanessa Brandao Nardy; Luciana Reboredo de Oliveira da Silva; Marcela Kelly Astete Gomez; Jaqueline Gomes Lima; Adriana Aparecida Ribeiro; Natalia Rocha Guimaraes; Luiz Takao Watanabe; Luana Barbosa Da Silva; Raquel da Silva Ferreira; Mara Patricia F. da Penha; Maria Jose Ortega; Andrea Gomez de la Fuente; Shirley Villalba; Juan Torales; Maria Liz Gamarra; Carolina Aquino; Gloria Patricia Martinez Figueredo; Wellington Santos Fava; Ana Rita C. Motta Castro; James Venturini; Sandra Maria do Vale Leone de Oliveira; Crhistinne Cavalheiro Maymone Goncalves; Maria do Carmo Debur Rossa; Guilherme Nardi Becker; Mayra Marinho Presibella; Nelson Quallio Marques; Irina Nastassja Riediger; Sonia Raboni; Gabriela Mattoso; Allan D. Cataneo; Camila Zanluca; Claudia N Duarte dos Santos; Patricia Akemi Assato; Felipe Allan da Silva da Costa; Mirele Daiana Poleti; Jessika Cristina Chagas Lesbon; Elisangela Chicaroni Mattos; Cecilia Artico Banho; Livia S Sacchetto; Marilia Mazzi Moraes; Rejane Maria Tommasini Grotto; Jayme A. Souza-Neto; Mauricio L Nogueira; Heidge Fukumasu; Luiz Lehmann Coutinho; Rodrigo Tocantins Calado; Raul Machado Neto; Ana Maria Bispo de Filippis; Rivaldo Venancio da Cunha; Carla Freitas; Cassio Roberto Leonel Peterka; Cassia de Fatima Rangel Fernandes; Wildo Navegantes; Rodrigo Fabiano do Carmo Said; Maria Almiron; Carlos F Campelo de A e Melo; Jose Lourenco; Tulio de Oliveira; Edward C Holmes; Ricardo Haddad; Sandra Coccuzzo Sampaio; Maria Carolina Elias; Simone Kashima; Luiz Carlos Junior Alcantara; Dimas Tadeu Covas.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.07.21264644

ABSTRACT

Brazil has experienced some of the highest numbers of COVID-19 infections and deaths globally and made Latin America a pandemic epicenter from May 2021. Although SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, important gaps remain in our understanding of local virus transmission dynamics. Here, we describe the genomic epidemiology of SARS-CoV-2 using near-full genomes sampled from 27 Brazilian states and an adjacent country - Paraguay. We show that the early stage of the pandemic in Brazil was characterised by the co-circulation of multiple viral lineages, linked to multiple importations predominantly from Europe, and subsequently characterized by large local transmission clusters. As the epidemic progressed, the absence of effective restriction measures led to the local emergence and international spread of Variants of Concern (VOC) and under monitoring (VUM), including the Gamma (P.1) and Zeta (P.2) variants. In addition, we provide a preliminary genomic overview of the epidemic in Paraguay, showing evidence of importation from Brazil. These data reinforce the need for the implementation of widespread genomic surveillance in South America as a toolkit for pandemic monitoring and providing a means to follow the real-time spread of emerging SARS-CoV-2 variants with possible implications for public health and immunization strategies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL